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Discovering the structure inherent in a set of patterns is a fundamen- 
tal aim of statistical inference or learning. One fruitful approach is to 
build a parameterized stochastic generative model, independent draws 
from which are likely to produce the patterns. For all but the sim- 
plest generative models, each pattern can be generated in exponentially 
many ways. It is thus intractable to adjust the parameters to maximize 
the probability of the observed patterns. We describe a way of finess- 
ing this combinatorial explosion by maximizing an easily computed 
lower bound on the probability of the observations. Our method can 
be viewed as a form of hierarchical self-supervised learning that may 
relate to the function of bottom-up and top-down cortical processing 
pathways. 

1 Introduction 

Following Helmholtz, we view the human perceptual system as a sta- 
tistical inference engine whose function is to infer the probable causes 
of sensory input. We show that a device of this kind can learn how to 
perform these inferences without requiring a teacher to label each sen- 
sory input vector with its underlying causes. A recognition model is used 
to infer a probability distribution over the underlying causes from the 
sensory input, and a separate generative model, which is also learned, is 
used to train the recognition model (Zemel 1994; Hinton and Zemel 1994; 
Zemel and Hinton 1995). 

As an example of the generative models in which we are interested, 
consider the shift patterns in Figure 1, which are on four 1 x 8 rows of 
binary pixels. These were produced by the two-level stochastic hierar- 
chical generative process described in the figure caption. The task of 
learning is to take a set of examples generated by such a process and 
induce the model. Note that underlying any pattern there are multiple 
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Figure 1: Shift patterns. In each of these six patterns the bottom row of square 
pixels is a random binary vector, the top row is a copy shifted left or right by 
one pixel with wraparound, and the middle two rows are copies of the outer 
rows. The patterns were generated by a two-stage process. First the direction 
of the shift was chosen, with left and right being equiprobable. Then each pixel 
in the bottom row was turned on (white) with a probability of 0.2, and the cor- 
responding shifted pixel in the top row and the copies of these in the middle 
rows were made to follow suit. If we treat the top two rows as a left retina and 
the bottom two rows as a right retina, detecting the direction of the shift re- 
sembles the task of extracting depth from simple stereo images of short vertical 
line segments. Copying the top and bottom rows introduces extra redundancy 
into the images that facilitates the search for the correct generative model. 

simultaneous causes. We call each possible set of causes an explumtion of 
the pattern. For this particular example, it is possible to infer a unique 
set of causes for most patterns, but this need not always be the case. 

For general generative models, the causes need not be immediately 
evident from the surface form of patterns. Worse still, there can be an 
exponential number of possible explanations underlying each pattern. 
The computational cost of considering all of these explanations makes 
standard maximum likelihood approaches such as the Expectation-Maxi- 
mization algorithm (Dempster et al. 1977) intractable. In this paper we 
describe a tractable approximation to maximum likelihood learning im- 
plemented in a layered hierarchical connectionist network. 

2 The Recognition Distribution 

The log probability of generating a particular example, d, from a model 
with parameters 0 is 

r 1 

(2.1) 
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where the (Y are explanations. If we view the alternative explanations 
of an example as alternative configurations of a physical system there 
is a precise analogy with statistical physics. We define the energy of 
explanation cy to be 

(2.2) 

The posterior probability of an explanation given d and 0 is related to its 
energy by the equilibrium or Boltzmann distribution, which at a temper- 
ature of 1 gives 

L ( 0 , d )  = -logp(tt I Q)p(d  I a,Q) 

where indices 0 and d in the last expression have been omitted for clarity. 
Using E ,  and P,  equation 2.1 can be rewritten in terms of the Helmholtz 
free energy, which is the difference between the expected energy of an 
explanation and the entropy of the probability distribution across expla- 
nations. 

(2.4) 

So far, we have not gained anything in terms of computational tractabil- 
ity because we still need to compute expectations under the posterior 
distribution P, which, in general, has exponentially many terms and can- 
not be factored into a product of simpler distributions. However, we 
know (Thompson 1988) that any probability distribution over the expla- 
nations will have at least as high a free energy as the Boltzmann distribu- 
tion (equation 2.3). Therefore we can restrict ourselves to some class of 
tractable distributions and still have a lower bound on the log probability 
of the data. Instead of using the true posterior probability distribution, 
P, for averaging over explanations, we use a more convenient probability 
distribution, Q. The log probability of the data can then be written as 

QaEa - c Qa log Q, + c Qa log[QalP,] (2.5) 

= -F(d; 0. Q )  + c Qa log[Q,/Pa] (2.6) 

where F is the free energy based on the incorrect or nonequilibrium pos- 
terior Q. 

Making the dependencies explicit, the last term in equation 2.5 is the 
Kullback-Leibler divergence between Q(d) and the posterior distribution, 
P(H, d) (Kullback 1959). This term cannot be negative, so by ignoring it 
we get a lower bound on the log probability of the data given the model. 

In our work, distribution Q is produced by a separate recognition 
model that has its own parameters, 4. These parameters are optimized 
at the same time as the parameters of the generative model, 8, to maxi- 
mize the overall fit function -F(d; 0,d) = -F[d; 0, Q(@)] .  Figure 2 shows 

logp(d I 0) = - 
a 0 a 

a 
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Figure 2: Graphic view of our approximation. The surface shows a simplified 
example of - F ( B ,  Q) as a function of the generative parameters 6 and the recog- 
nition distribution Q. As discussed by Neal and Hinton (1994), the Expectation- 
Maximization algorithm ascends this surface by optimizing alternately with re- 
spect to 8 (the M-step) and Q (the E-step). After each E-step, the point on the 
surface lies on the line defined by Qn = Pa, and on this line, -F = logp(d I 0). 
Using a factorial recognition distribution parameterized by 4 restricts the surface 
over which the system optimizes (labeled "constrained posterior"). We ascend 
the restricted surface using a conjugate gradient optimization method. For a 
given 8, the difference between logp(d I 0) = maxQ(-F(O,Q)} and - F ( 6 , Q )  
is the Kullback-Leibler penalty in equation 2.5. That EM gets stuck in a local 
maximum here is largely for graphic convenience, although neither it, nor our 
conjugate gradient procedure, is guaranteed to find its respective global optima. 
Showing the factorial recognition as a connected region is an arbitrary conven- 
tion; the actual structure of the recognition distributions cannot be preserved in 
one dimension. 

graphically the nature of the approximation we are making and the re- 
lationship between our procedure and the EM algorithm. From equa- 
tion 2.5, maximizing -F is equivalent to maximizing the log probability 
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Figure 3: A simple three layer Helmholtz machine modeling the activity of 5 
binary inputs (layer 1) using a two-stage hierarchical model. Generative weights 
(0) are shown as dashed lines, including the generative biases, the only such 
input to the units in the top layer. Recognition weights (4 )  are shown with solid 
lines. Recognition and generative activation functions are described in the text. 

of the data minus the Kullback-Leibler divergence, showing that this 
divergence acts like a penalty on the traditional log probability. The 
recognition model is thus encouraged to be a good approximation to the 
true posterior distribution P. However, the same penalty also encourages 
the generative model to change so that the true posterior distributions 
will be close to distributions that can be represented by the recognition 
model. 

3 The Deterministic Helmholtz Machine 

A Helmholtz machine (Fig. 3) is a simple implementation of these prin- 
ciples. It is a connectionist system with multiple layers of neuron-like 
binary stochastic processing units connected hierarchically by two sets 
of weights. Top-down connections 0 implement the generative model. 
Bottom-up connections 4 implement the recognition model. 
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The key simplifying assumption is that the recognition distribution 
for a particular example d, Q ( c $ , ~ ) ,  is factorial (separable) in each layer. 
If there are h stochastic binary units in a layer 8, the portion of the dis- 
tribution P ( B , d )  due to that layer is determined by Zh - 1 probabilities. 
However, Q(q5,d) makes the assumption that the actual activity of any 
one unit in layer P is independent of the activities of all the other units 
in that layer, given the activities of all the units in the lower layer, l - 1, 
so the recognition model needs only specify h probabilities rather than 
2" - 1. The independence assumption allows F(d; 8.4) to be evaluated 
efficiently, but this computational tractability is bought at a price, since 
the true posterior is unlikely to be factorial: the log probability of the 
data will be underestimated by an amount equal to the Kullback-Leibler 
divergence between the true posterior and the recognition distribution. 

The generative model is taken to be factorial in the same way, al- 
though one should note that factorial generative models rarely have 
recognition distributions that are themselves exactly factorial. 

Recognition for input example d entails using the bottom-up connec- 
tions q5 to determine the probability q l ( $ , d )  that the jth unit in layer t 
has activity sf = 1. The recognition model is inherently stochastic-these 
probabilities are functions of the 0.1 activities sfp1 of the units in layer 
I - 1. We use 

$ ( A  s t - ' )  = u (7 s:-14;-y) (3.1) 

where " ( x )  = 1/[1 + exp(-x)] is the conventional sigmoid function, and 
sp-' is the vector of activities of the units in layer t - 1. All units have 
recognition biases as one element of the sums, all the activities at layer 4 
are calculated after all the activities at layer P - 1, and s: are the activities 
of the input units. It is essential that there are no feedback connections 
in the recognition model. 

In the terms of the previous section, LY is a complete assignment of 
s,! for all the units in all the layers other than the input layer (for which 
B = 1). The multiplicative contributions to the probability of choosing 
that assignment using the recognition weights are 9; for units that are on 
and 1 - q,! for units that are off 

(3.2) 

The Helmholtz free energy .F depends on the generative model through 
E,(B,d)  in equation 2.2. The top-down connections 6' use the activities 
sP+' of the units in layer t + 1 to determine the factorial generative prob- 
abilities $(el se+') over the activities of the units in layer e. The obvious 
rule to use is the sigmoid: 

(3.3) 
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including a generative bias (which is the only contribution to units in the 
topmost layer). Unfortunately this rule did not work well in practice for 
the sorts of inputs we tried. Appendix A discusses the more complicated 
method that we actually used to determine pf(0,set1). Given this, the 
overall generative probability of a is 

We extend the factorial assumption to the input layer l = 1. The activities 
s2 in layer 2 determine the probabilities p; (0, s2) of the activities in the 
input layer. Thus 

(3.5) 

Combining equations 2.2, 3.4, and 3.5, and omitting dependencies for 
clarity, 

E n ( 0 , d )  = -logp(ff I @ ) p ( d  I 0,s) (3.6) 

Putting together the two components of F, an unbiased estimate of the 
value of F(d; 0 , $ )  based on an explanation a drawn from Qn is 

FcT,,(d; 0, 4) = E n  + log Qa (3.8) 

(3.9) 

One could perform stochastic gradient ascent in the negative free en- 
ergy across all the data - F ( d l  d) = - Ed F(d; 8,d)  using equation 3.9 and 
a form of REINFORCE algorithm (Barto and Anandan 1985; Williams 
1992). However, for the simulations in this paper, we made a number 
of mean-field inspired approximations, in that we replaced the stochastic 
binary activities sf by their mean values under the recognition model qf.  
We took 

we made a similar approximation for pf, which we discuss in Appendix A, 
and we then averaged the expression in equation 3.9 over cy to give the 
overall free energy: 
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where the innermost term in the sum is the Kullback-Leibler divergence 
between generative and recognition distributions for unit j in layer P for 
example d: 

Weights H and 4 are trained by following the derivatives of . F ( O , # )  in 
equation 3.11. Since the generative weights H do not affect the actual 
activities of the units, there are no cycles, and so the derivatives can be 
calculated in closed form using the chain rule, Appendix B gives the 
appropriate recursive formulas. 

Note that this deterministic version introduces a further approxima- 
tion by ignoring correlations arising from the fact that under the real 
recognition model, the actual activities at layer (i + 1 are a function of the 
actual activities at layer P rather than their mean values. 

Figure 4 demonstrates the performance of the Helmholtz machine in 
a hierarchical learning task (Becker and Hinton 19921, showing that it is 
capable of extracting the structure underlying a complicated generative 
model. The example shows clearly the difference between the generative 
(8) and the recognition (4)  weights, since the latter often include nega- 
tive side-lobes around their favored shifts, which are needed to prevent 
incorrect recognition. 

4 The Wake-Sleep Algorithm 

The derivatives required for learning in the deterministic Helmholtz ma- 
chine are quite complicated because they have to take into account the 
effects that changes in an activity at one layer will have on activities 
in higher layers. However, by borrowing an idea from the Boltzmann 
machine (Hinton and Sejnowski 1986; Ackley et al. 19851, we get the 
wake-sleep algorithm, which is a very simple learning scheme for lay- 
ered networks of stochastic binary units that approximates the correct 
derivatives (Hinton et a / .  1995). 

Learning in the wake-sleep algorithm is separated into two phases. 
During the wake phase, data d from the world are presented at the low- 
est layer and binary activations of units at successively higher layers are 
picked according to the recognition probabilities, qf( 4, determined 
by the bottom-up weights. The top-down generative weights from layer 
P + 1 to layer P are then altered to reduce the Kullback-Leibler divergence 
between the actual activations and the generative probabilities p f ( H ,  se+'). 
In the sleep phase, the recognition weights are turned off and the top- 
down weights are used to activate the units. Starting at the top layer, 
activities are generated at successively lower layers based on the current 
top-down weights 0. The network thus generates a random instance from 
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its generative model. Since it has generated the instance, it knows the 
true underlying causes, and therefore has available the target values for 
the hidden units that are required to train the bottom-up weights. If 
the bottom-up and the top-down activation functions are both sigmoid 
(equations 3.1 and 3.3), then both phases use exactly the same learning 
rule, the purely local delta rule (Widrow and Stearns 1985). 

Recognition Generative 
2-3: 3.7 3-2: 13.3 

1-2: 11.7 2-1: 13.3 

Biases to 2 ; 38.4 Biases to 2 : 3.0 
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Unfortunately, there is no single cost function that is reduced by these 
two procedures. This is partly because the sleep phase trains the recog- 
nition model to invert the generative model for input vectors that are 
distributed according to the generative model rather than according to 
the real data and partly because the sleep phase learning does not follow 
the correct gradient. Nevertheless, Qa = P ,  at the optimal end point, if it 
can be reached. Preliminary results by Brendan Frey (personal commu- 
nication) show that this algorithm works well on some nontrivial tasks. 

5 Discussion 

The Helmholtz machine can be viewed as a hierarchical generalization 
of the type of learning procedure described by Zemel (1994) and Hinton 
and Zemel(1994). Instead of using a fixed independent prior distribution 
for each of the hidden units in a layer, the Helmholtz machine makes this 
prior more flexible by deriving it from the bottom-up activities of units 
in the layer above. In related work, Zemel and Hinton (1995) show that a 
system can learn a redundant population code in a layer of hidden units, 
provided the activities of the hidden units are represented by a point in 
a multidimensional constraint space with pre-specified dimensionality. 
The role of their constraint space is to capture statistical dependencies 
among the hidden unit activities and this can again be achieved in a more 
uniform way by using a second hidden layer in a hierarchical generative 
model of the type described here. 

Figure 4: Facing page. The shifter. Recognition and generative weights for a 
three layer Helmholtz machine’s model for the shifter problem (see Fig. I for 
how the input patterns are generated). Each weight diagram shows recognition 
or generative weights between the given layers (1-2, 2-3, etc.) and the number 
quoted is the magnitude of the largest weight in the array. White is positive, 
black negative, but the generative weights shown are the natural logarithms 
of the ones actually used. The lowest weights in the 2-3 block are the biases 
to layer 3; the biases to layer 2 are shown separately because of their different 
magnitude. All the units in layer 2 are either silent, or respond to one or two 
pairs of appropriately shifted pairs of bits. The recognition weights have in- 
hibitory side lobes to stop their units from responding incorrectly. The units in 
layer 3 are shift tuned, and respond to the units in layer 2 of their own shift 
direction. Note that under the imaging model (equation A.2 or A.3), a unit in 
layer 3 cannot specify that one in layer 2 should be off, forcing a solution that 
requires two units in layer 3. One aspect of the generative model is therefore 
not correctly captured. Finding weights equivalent to those shown is hard, re- 
quiring many iterations of a conjugate gradient algorithm. To prevent the units 
in layers 2 and 3 from being permanently turned off early in the learning they 
were given fixed, but tiny generative biases (0 = 0.05). Additional generative 
biases to layer 3 are shown in the figure; they learn the overall probability of 
left and right shifts. 



www.manaraa.com

The Helmholtz Machine 899 

The old idea of analysis-by-synthesis assumes that the cortex contains 
a generative model of the world and that recognition involves inverting 
the generative model in real time. This has been attempted for non- 
probabilistic generative models (MacKay 1956; Pece 1992). However, for 
stochastic ones it typically involves Markov chain Monte Carlo methods 
(Neal 1992). These can be computationally unattractive, and their require- 
ment for repeated sampling renders them unlikely to be employed by the 
cortex. In addition to making learning tractable, its separate recognition 
model allows a Helmholtz machine to recognize without iterative sam- 
pling, and makes it much easier to see how generative models could be 
implemented in the cortex without running into serious time constraints. 
During recognition, the generative model is superfluous, since the recog- 
nition model contains all the information that is required. Nevertheless, 
the generative model plays an essential role in defining the objective 
function F that allows the parameters 4 of the recognition model to be 
learned. 

The Helmholtz machine is closely related to other schemes for self- 
supervised learning that use feedback as well as feedforward weights 
(Carpenter and Grossberg 1987; Luttrelll992,1994; Ullman 1994; Kawato 
et al. 1993; Mumford 1994). By contrast with adaptive resonance theory 
(Carpenter and Grossberg 1987) and the counter-streams model (Ullman 
1994), the Helmholtz machine treats self-supervised learning as a statisti- 
cal problem--one of ascertaining a generative model that accurately cap- 
tures the structure in the input examples. Luttrell (1992, 1994) discusses 
multilayer self-supervised learning aimed at faithful vector quantization 
in the face of noise, rather than our aim of maximizing the likelihood. 
The outputs of his separate low level coding networks are combined at 
higher levels, and thus their optimal coding choices become mutually de- 
pendent. These networks can be given a coding interpretation that is very 
similar to that of the Helmholtz machine. However, we are interested 
in distributed rather than local representations at each level (multiple 
cause rather than single cause models), forcing the approximations that 
we use. Kawato et al. (1993) consider forward (generative) and inverse 
(recognition) models (Jordan and Rumelhart 1992) in a similar fashion to 
the Helmholtz machine, but without this probabilistic perspective. The 
recognition weights between two layers do not just invert the generation 
weights between those layers, but also take into account the prior activ- 
ities in the upper layer. The Helmholtz machine fits comfortably within 
the framework of Grenander’s pattern theory (Grenander 1976) in the 
form of Mumford’s (1994) proposals for the mapping onto the brain. 

As described, the recognition process in the Helmholtz machine is 
purely bottom-up-the top-down generative model plays no direct role 
and there is no interaction between units in a single layer. However, 
such effects are important in real perception and can be implemented 
using iterative recognition, in which the generative and recognition acti- 
vations interact to produce the final activity of a unit. This can introduce 
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substantial theoretical complications in ensuring that the activation pro- 
cess is stable and converges adequately quickly, and in determining how 
the weights should change so as to capture input examples more accu- 
rately. An interesting first step toward interaction within layers would 
be to organize their units into small clusters with local excitation and 
longer-range inhibition, as is seen in the columnar structure of the brain. 
Iteration would be confined within layers, easing the complications. 

Appendix A: The Imaging Model 

The sigmoid activation function given in equation 3.3 turned out not to 
work well for the generative model for the input examples we tried, 
such as the shifter problem (Fig. 1). Learning almost invariably got 
caught in one of a variety of local minima. In the context of a one layer 
generative model and without a recognition model, Saund (1994; 1995) 
discussed why this might happen in terms of the underlying imaging 
model-which is responsible for turning binary activities in what we call 
layer 2 into probabilities of activation of the units in the input layer. He 
suggested using a noisy-or imaging model (Pearl 1988), for which the 
weights 0 5 H:+';; 5 1 are interpreted as probabilities that sf = 1 if unit 
si+' = 1, and are combined as 

$0. sf+') = 1 - fl (I - S ; + l o f + y )  
k 

(A.1) 

The noisy-or imaging model worked somewhat better than the sigmoid 
model of equation 3.3, but it was still prone to fall into local minima. 
Dayan and Zemel (1995) suggested a yet more competitive rule based 
on the integrated segmentation and recognition architecture of Keeler et 
al. (1991). In this, the weights 0 5 Of",;' are interpreted as the odds that 
s: = 1 if unit s;" = 1, and are combined as 

For the deterministic Helmholtz machine, we need a version of this ac- 
tivation rule that uses the probabilities qe+' rather than the binary sam- 
ples st+'. This is somewhat complicated, since the obvious expression 
1 - 1/(1 + CkqFIOpl;p) turns out not to work. In the end (Dayan and 
Zemel 1995) we used a product of this term and the deterministic version 
of the noisy-or: 
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Appendix B gives the derivatives of this. We used the exact expected 
value of equation A.2 if there were only three units in layer C + 1 because 
it is computationally inexpensive to work it out. 

For convenience, we used the same imaging model (equations A.2 
and A.3) for all the generative connections. In general one could use 
different types of connections between different levels. 

Appendix B: The Derivatives 

Write F(d; 6, $) for the contribution to the overall error in equation 3.11 
for input example d, including the input layer: 

Then the total derivative for input example d with respect to the activa- 
tion of a unit in layer I is 

since changing 4: affects the generative priors at layer L - 1, and the 
recognition activities at all layers higher than C. These derivatives can be 
calculated in a single backward propagation pass through the network, 
accumulating dF(d; 6, $)/a@ as it goes. The use of standard sigmoid 
units in the recognition direction makes aqf/dqf completely conventional. 
Using equation A.3 makes 
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One also needs the derivative 

This is exactly what we used for the imaging model in equation A.3. 
However, it is important to bear in mind that pf(O,se+l) should really 
be a function of the stochastic choices of the units in layer ! + 1. The 
contribution to the expected cost .F is a function of (logpf(O,sEf')) and 
(log [l - p,'(d. s f + ' ) ] ) ,  where ( ) indicates averaging over the recogni- 
tion distribution. These are not the same as log(pf(B,s'+')) and 

, which is what the deterministic machine uses. For log (1 - ( $ ( d ,  s'+l 

other imaging mo it is possible to take this into account. 
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